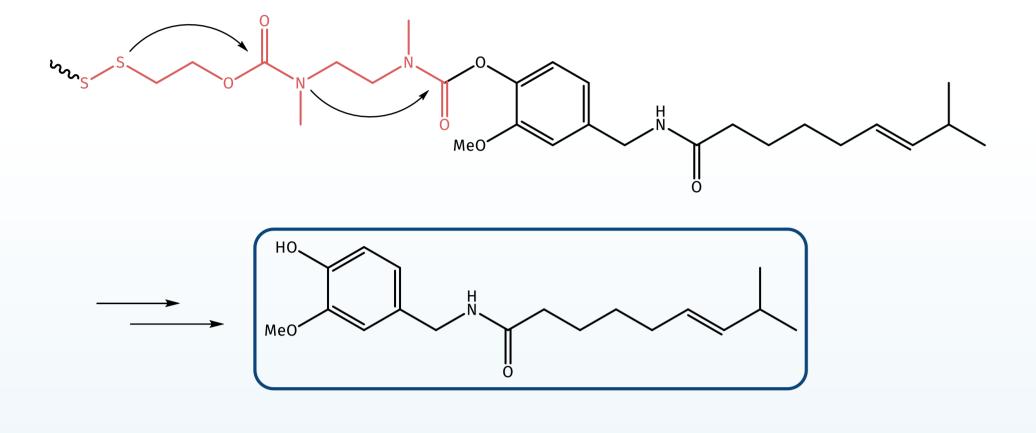
Linkerology®

2023 # 01 — Conjugation of Natural Products

Examples how Natural Products can be Decorated with (Self-Immolative) Linkers


Capsaicin:

A natural alkaloid found in chilly peppers, paprika.

Responsible for the burning sensation in peppers

- an analgesic in topical ointments
- pain relieve in muscles and joints
- Reduction of peripheral neuropathy

Linker-conjugated Capsaicin undergoes self-immolative fragmentation upon reduction

Huperzine A:

A natural alkaloid found in clubmoss family.

- acetylcholine esterase inhibitor
- NMDA agonist
- treatment of neurodegenerative (Alzheimer's)
- supplement to improve memory and cognitive functions

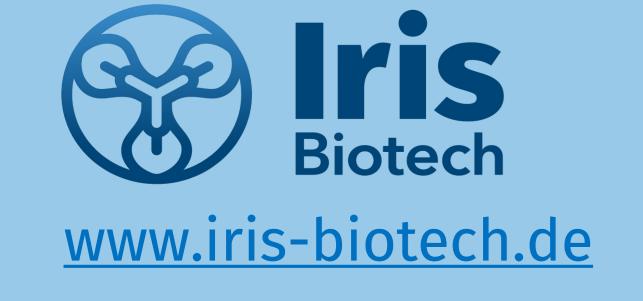
Linker-conjugated Huperzine A undergoes self-immolative fragmentation in the presence of cathepsin B.

Lithocholic acid:

Natural compounds in the class of secondary bile acids produced by gut bacteria.

- anti-cancer research
- selective killing of neuroblastoma cells in the presence of healthy cells.
- a remedy to gallstone disease

Linker-conjugated Lithocholic acid undergoes selfimmolative fragmentation under acidic conditions.



Linkerology® - Conceptual Overview

Carrier	Surface Treatment & Conjugation Chemistry	Cleavage	Fragmentation	Cargo Functionality
 Biopolymers: Peptides Proteins Antibodies Single Chain Nanobodies Camelides Oligonucleotides Aptamers 	Thioether formation with maleimide Disulfide bond formation Acylation of amines His-Tag acylation Click conjugation (CuCAAC, SPAAC, IEDDA) Enzyme supported conjugation: • HaloTag® • CLIP-Tag TM • SNAP-Tag® Sequence dependent conjugation (Sortase)	Enzymatic hydrolysis: • Val-Ala • Val-Cit • Phe-Lys • Gly-Phe-Leu-Gly • Ala-Leu-Ala-Leu • Cyclobutyl-Ala • Cyclobutyl-Cit • Glucuronic acid	p-Aminobenzyl p-Hydroxybenzyl p-Mercaptobenzyl	Primary & secondary amines H ₂ N— Tertiary amines R ₁
Carbon:NanotubesFullerenes	Nitrenen addition via photoactivation of perfluoroarylazides		Oxathiolone	R ₂
Metals:GoldSilver	Affinity of sulfur to gold and silver	Reduction — Manager SH — Manage	X = NH, S	Alcohols Phenols HO—
Metal oxide	Chelat formation		Dimethylimidazolidinone	ПО
Plastic polymers:TeflonPolyethylenePolystyreneLatex	Ammonia or acrylic acid plasma followed by amide bond formation	Acidic hydrolysis		Carboxylic acids
Silicates	Affinity of silicon and oxygen		N	HO

