

HYDROLYSIS STABLE ANALOGS

Phosphono Amino Acids

Phosphorylation is one of the most important activating post-translational modifications.

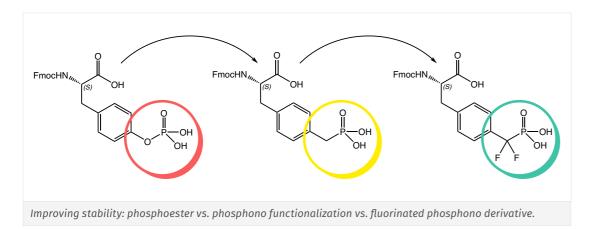
page 1

Cellular phosphatases are unable to remove phosphono groups.

page 1

Fluorination renders the phosphonic acid more acidic.

page 1


Product details

Hydrolysis Stable Analogs

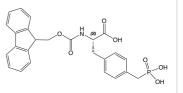
Phosphono Amino Acids

The preparation of synthetic phosphorylated peptides is of significant interest for research. Considering posttranslational modifications in organisms, phosphorylation of serine, threonine, and tyrosine is counted among the most important activating ones. Nevertheless, from a chemical point of view, those phosphoesters are highly hydrolysis labile.

Iris Biotech presents hydrolysis-stable phosphono-amino acid derivatives of pSer, pThr, and pTyr, termed Pma (Ser), Pmab (Thr), and Pmp (Tyr) as well as their next generation fluorinated derivatives. Fluorination renders the phosphonic acid more acidic and thus an even better mimic of the parent phosphoamino acid while keeping the hydrolytic stability.

The hydrolysis resistance of the phosphono-derivatives has an additional benefit: cellular phosphatases are unable to remove the phosphate group mimic. Consequently, peptides or semi-synthetic proteins that include Pma, Pmab or Pmp are valuable tools for cell-based experiments.

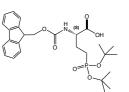
All derivatives are suitably protected for use in peptide synthesis by Fmoc strategy. The *tert*-butyl protecting groups prevent side reactions and can be removed during final deprotection of the peptide.


Interested in the difluoro phosphono derivatives of serine and threonine?
Please contact our Custom Synthesis Service!

FAA1745 Fmoc-L-Pmp-OH

N-alpha-(9-Fluorenylmethyloxycarbonyl)-4-phospho nomethyl-L-phenylalanine

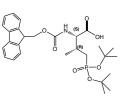
CAS-No. 229180-64-7 Formula $C_{25}H_{24}NO_{7}P$ Mol. weight 481,42 g/mol



FAA5580 Fmoc-L-Pma(tBu)2-OH

N-alpha-(9-Fluorenylmethyloxycarbonyl)-4-(di-t-butyl-phosphonomethyl)-L-alanine

 $\begin{array}{lll} \text{CAS-No.} & \textbf{2088020-71-5} \\ \text{Formula} & \textbf{C}_{z7}\textbf{H}_{36}\textbf{NO}_{7}\textbf{P} \\ \text{Mol. weight} & \textbf{517,55 g/mol} \end{array}$



FAA5600 Fmoc-L-Pmab(tBu)2-OH

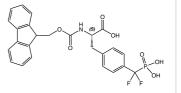
(2S,3R)-2-((9-fluorenylmethyloxycarbonyl) amino)-4-(di-t-butylphosphonomethyl)-3-methylbuty-ric acid

CAS-No. 1199612-89-9
Formula C₂₈H₃₈NO₇P
Mol. weight 531,58 g/mol

FAA5590 Fmoc-L-Pmp(tBu)2-OH

N-alpha-(9-Fluorenylmethyloxycarbonyl)-4-(di-t-butyl-phosphonomethyl)-L-phenylalanine

CAS-No. 166409-77-4 Formula C₃₃H₄₀NO₇P Mol. weight 593,65 g/mol



FAA5595 Fmoc-L-F2Pmp-OH

4-(Difluorophosphonomethyl)-N-(9-fluorenylmethyloxycarbonyl)-L-phenylalanine

CAS-No. 160751-44-0 Formula $C_{25}H_{22}F_2NO_7P$ Mol. weight 517,42 g/mol

References:

- → Phosphatase-Stable Phosphoamino Acid Mimetics That Enhance Binding Affinities with the Polo-Box Domain of Polo-like Kinase 1; D. Hymel, T. R. Burke; Jr. Chem Med Chem 2017; 12: 202-206. Thttps://doi.org/10.1002/cmdc.201600574
- → An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds; W. Hoffmann, J. Langenhan, S. Huhmann, J. Moschner, R. Chang, M. Accorsi, J. Seo, J. Rademann, G. Meijer, B. Koksch, M. T. Bowers, G. von Helden, K. Pagel; Angew Chem Int Ed Engl 2019; 58: 8216-8220. ☐ https://doi.org/10.1002/anie.201813954

