

Peptide Modifier – Fatty Amino Acids

Fatty Amino Acids have raised interest recently, as they improve the pharmacokinetic & pharmacologic properties of peptide APIs and other biopharmaceuticals. The most prominent block busters are Liraglutide and Semaglutide. Their lifetime in serum is drastically improved as the fatty acid residue helps to bind temporarily to serum albumin. This conjugation enhances stability towards proteolytic degradation and serves as drug delivery technique.

GLP – 1 (7-37) amide

H-His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-Gly-NH2

Liraglutide (Victoza®)

[γ-L-Glutamoyl(N-α-hexadecanoyl)-Lys26, Arg34-GLP-1(7–37)]

Semaglutide (Rybelsus®, Ozempic®)

\$267 million (2018)

\$4.4 billion (2018)

N^{6.26}-{18-[N-(17-carboxyheptadecanoyl)-L-γ-glutamyl]-10-oxo-3,6,12,15-tetraoxa-9,18- diazaoctadecanoyl}-[8-(2-amino-2-propanoic acid),34-L-arginine]-GLP-1(7–37)]

Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide.

Jesper Lau, Paw Bloch, Lauge Schäffer, Ingrid Pettersson, Jane Spetzler, Jacob Kofoed, Kjeld Madsen, Lotte Bjerre Knudsen, James McGuire, Dorte Bjerre Steensgaard, Holger Martin Strauss, Dorte X. Gram, Sanne Møller Knudsen, Flemming Seier Nielsen, Peter Thygesen, Steffen Reedtz-Runge, Thomas Kruse; *J. Med. Chem.* 2015; **58(18):** 7370-7380. DOI: 10.1021/acs.jmedchem.5b00726

ABSTRACT: Liraglutide is an acylated glucagon-like peptide-1 (GLP-1) analogue that binds to serum albumin *in vivo* and is approved for once-daily treatment of diabetes as well as obesity. The aim of the present studies was to design a once weekly GLP-1 analogue by <u>increasing albumin affinity and secure full stability against metabolic degradation</u>. The fatty acid moiety and the linking chemistry to GLP-1 were the key features to secure high albumin affinity and GLP-1 receptor (GLP-1R) potency and in obtaining a prolonged exposure and action of the GLP-1 analogue. Semaglutide was selected as the optimal once weekly candidate. Semaglutide has two amino acid substitutions compared to human GLP-1 (Aib8, Arg34) and is derivatized at lysine 26. The GLP-1R affinity of semaglutide (0.38 \pm 0.06 nM) was three-fold decreased compared to liraglutide, whereas the albumin affinity was increased. The plasma half-life was 46.1 h in mini-pigs following i.v. administration, and semaglutide has an MRT of 63.6 h after s.c. dosing to mini-pigs. Semaglutide is currently in phase 3 clinical testing.

Building Blocks for Manufacturing Liraglutide and Semaglutide Available in Large Scale & Including Documentation for GMP Manufacturing of the Peptide APIs

Empowering Peptide Innovation

Peptide Half-Life Extension: Divalent, Small-Molecule Albumin Interactions Direct the Systemic Properties of Glucagon-Like Peptide 1 (GLP-1) Analogues.

Esben M. Bech, Manuel C. Martos-Maldonado, Pernille Wismann, Kasper K. Sørensen, Søren Blok van Witteloostuijn, Mikkel B. Thygesen, Niels

Vrang, Jacob Jelsing, Søren L. Pedersen, and Knud J. Jensen; J. Med. Chem., 2017; **60(17):** 7434–7446. DOI: 10.1021/acs.jmedchem.7b00787.

ABSTRACT: Noncovalent binding of biopharmaceuticals to human serum albumin protects against enzymatic degradation and renal clearance. Herein, we investigated the effect of mono- or divalent small-molecule albumin binders for half-life extension of peptides. For proof-of-principle, the clinically relevant glucagon-like peptide 1 (GLP-1) was functionalized with diflunisal, indomethacin, or both. In vitro, all GLP-1 analogues had subnanomolar GLP-1 receptor potency. Surface plasmon resonance revealed that both small molecules were able to confer albumin affinity to GLP-1 and indicated that affinity is increased for divalent analogues. In lean mice, the divalent GLP-1 analogues were superior to monovalent analogues with respect to control of glucose homeostasis and suppression of food intake. Importantly, divalent GLP-1 analogues showed efficacy comparable to liraglutide, an antidiabetic GLP-1 analogue that carries a long-chain fatty acid. Finally, pharmacokinetic investigations of a divalent GLP-1 analogue demonstrated a promising gain in circulatory half-life and absorption time compared to its monovalent equivalent.

# C	Trival Name	IUPAC Name	Formula
1	Formic acid	Methanoic acid	НСООН
2	Acetic acid	Ethanoic acid	CH₃COOH
3	Propionic acid	Propanoic acid	CH ₃ CH ₂ COOH
4	Butyric acid	Butanoic acid	CH₃(CH₂)₂COOH
5	Valeric acid	Pentanoic acid	CH ₃ (CH ₂) ₃ COOH
6	Caproic acid	Hexanoic acid	$CH_3(CH_2)_4COOH$
7	Enanthoic acid	Heptanoic acid	CH₃(CH₂)₅COOH
8	Caprylic acid	Octanoic acid	CH ₃ (CH ₂) ₆ COOH
9	Pelargonic acid	Nonanoic acid	CH ₃ (CH ₂) ₇ COOH
10	Capric acid	Decanoic acid	CH₃(CH₂) ₈ COOH
12	Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH
14	Myristic acid	Tetradecanoic acid	$CH_3(CH_2)_{12}COOH$
16	Palmitic acid	Hexadecanoic acid	$CH_3(CH_2)_{14}COOH$
18	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH
20	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH
22	Behenic acid	Docosanoic acid	$CH_3(CH_2)_{20}COOH$
24	Lignoceric acid	Tetracosanic acid	CH ₃ (CH ₂) ₂₂ COOH
26	Cerotic acid	Hexacosanoic acid	CH ₃ (CH ₂) ₂₄ COOH
28	Montanic acid	Octacosanoic acid	CH ₃ (CH ₂) ₂₆ COOH
30	Melissic acid	Triacontanoic acid	CH ₃ (CH ₂) ₂₈ COOH
32	Lacceroic acid	Dotriacontanoic acid	CH ₃ (CH ₂) ₃₀ COOH
33	Psyllic acid	Tritriacontanoic acid	CH ₃ (CH ₂) ₃₁ COOH
34	Geddic acid	Tetratriacontanoic acid	CH ₃ (CH ₂) ₃₂ COOH
35	Ceroplastic acid	Pentatriacontanoic acid	CH ₃ (CH ₂) ₃₃ COOH

Available Fatty Acid containing Building Blocks for the Production of Liraglutide:

PAA1010	Palm-L-Glu(OSu)-OMe
PAA1000	Palm-L-Glu(OSu)-OtBu
PAA1005	Palm-D-Glu(OSu)-OtBu
PAA1160	Palm-L-Glu-OtBu
FAA3790	Fmoc-L-Lys(Palm-L-Glu-OtBu)-OH
FAA7760	Fmoc-L-Lys(Palm-D-Glu-OtBu)-OH
FAA7480	Fmoc-D-Lys(Palm-L-Glu-OtBu)-OH
FAA7750	Fmoc-D-Lys(Palm-D-Glu-OtBu)-OH

main building block impurity impurity impurity

Available Building Blocks for the Production of Semaglutide:

FAA7640	Fmoc-L-Lys(Ggu-L-Glu(AA-AA))-OH
PEG8080	Boc-AEEA
BAA1466	Boc-AEEA*DCHA
BAA1485	Boc-AEEA-AEEA
FAA1435	Fmoc-AEEA
FAA1787	Fmoc-AEEA-AEEA

Empowering Peptide Innovation

Available Fatty Amino Acids Analogues including Terminal Functionality

- ✓ Conjugates with Asn, Cys, Dap, Dab, Gln, Lys, Ser, give easy access to isostructural analogues.
- ✓ A variety of terminal functional groups can nicely be designed.
- ✓ Production route is a scalable process, up-scaling is easily possible.
- ✓ Longer homologues of norleucine & longer fatty amino acid homologues with different terminal functional groups are in development and can be supplied on custom synthesis basis.

Empowering Peptide Innovation

Available Amino Acids Derivatives carrying Long Aliphatic and other Hydrophobic Residues

- ✓ Conjugates with Arg, Asn, Cys, Gln, His, Hyp, Ser, Tyr give easy access to new analogues.
- \checkmark Two fatty acid residues can be attached on the same amino acid in some cases.
- ✓ Published applications: antimicrobial peptides, adjuvants, cancer vaccines, novel receptor agonist, cancer imaging, and peptide amphiphiles (PAs) with unusual thermal stability.
- ✓ Production route is a scalable process, up-scaling is easily possible.

Contact us for Custom Synthesis of the Fatty Amino Acid of Your Choice!